1,442 research outputs found

    A tomographic technique for the simultaneous imaging of temperature, chemical species, and pressure in reactive flows using absorption spectroscopy with frequency-agile lasers

    Get PDF
    This paper proposes a technique that can simultaneously retrieve distributions of temperature, concentration of chemical species, and pressure based on broad bandwidth, frequency-agile tomographic absorption spectroscopy. The technique holds particular promise for the study of dynamic combusting flows. A proof-of-concept numerical demonstration is presented, using representative phantoms to model conditions typically prevailing in near-atmospheric or high pressure flames. The simulations reveal both the feasibility of the proposed technique and its robustness. Our calculations indicate precisions of ∼70 K at flame temperatures and ∼0.05 bars at high pressure from reconstructions featuring as much as 5% Gaussian noise in the projections.This work was supported by the Seventh Framework Program (Grant Agreement No. PIIF-GA-2012-330840) of the European Union and was performed using the Darwin Supercomputer of the University of Cambridge High Performance Computing Service.Copyright 2014 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The article appeared in Applied Physics Letters 104, 034101 (2014) and may be found at (http://scitation.aip.org/content/aip/journal/apl/104/3/10.1063/1.4862754)

    A numerical investigation of high-resolution multispectral absorption tomography for flow thermometry

    Get PDF
    Multispectral absorption tomography (MAT) is now a well-established technique that can be applied for the simultaneous imaging of temperature, species concentration, and pressure of reactive flows. However, only intermediate spatial resolution, on order of 15×15 grid points, has so far been achievable in previous demonstrations. The aim of the present work is to provide a numerical validation of our MAT algorithm for thermometry of combusting flows, but with greatly improved spatial resolution to motivate its experimental realization in practical environments. We demonstrate a grid resolution that is comparable to that of classical absorption tomography (CAT) containing 80×80 elements from only two orthogonal projections, which is impractical to realize with CAT but especially desirable for applications where optical access is limited. This is achieved using the smoothness assumption, which holds true under most combustion conditions. The study shows that better spatial resolution can be obtained through a simple increase in the spatial sampling frequency for the two available projections, as the smoothness condition becomes more reliable on smaller spatial scales. Our work also demonstrates the first application of MAT for full volumetric reconstructions. The studies thus provide robust guidelines for the implementation of MAT over large spatial scales and lay solid foundations for its development and application in complex technical combustion scenarios, where spatial resolution is crucial to investigate the interaction of flow phenomena with chemical reactions.This work was funded by the European Commission under Grant No. ASHTCSC 330840 and was partly performed using the Darwin Supercomputer of the University of Cambridge High Performance Computing Service. Clemens F. Kaminski also wishes to acknowledge EPSRC for funding (grant EP/L015889/1).This is the final published version of a paper published in Applied Physics B, February 2015, DOI 10.1007/s00340-015-6012-

    Interface identification in weathered granite strata based on a instrumented drilling system

    Get PDF
    A hydraulic rotary drill instrumented with a drilling process monitoring system (DPM) was used for site investigation in Hong Kong weathered granite foundation engineering. The penetrating parameters such as effective thrust force, rotational speed, flushing pressure, penetrating rate and displacement of the bit were monitored in real time. A varied slope was defined as a significant index for identification of dominative and subsidiary interfaces in the granite site. The result from t-test shows that the confidence of the DPM in identification of the geotechnical interfaces is 99%. Besides, the analysis of variation of the penetrating parameters at the interfaces indicates that there are different fluctuations at the interfaces in the curves of the parameters with borehole depth. The response degree of effective thrust force and penetrating rate to the variation of rock strength at the interfaces is 81.82% alone.link_to_subscribed_fulltex

    Regional difference of the start time of the recent warming in Eastern China: prompted by a 165-year temperature record deduced from tree rings in the Dabie Mountains

    Get PDF
    Tree-ring studies from tropical to subtropical regions are rarer than that from extratropical regions, which greatly limit our understanding of some critical climate change issues. Based on the tree-ring-width chronology of samples collected from the Dabie Mountains, we reconstructed the April-June mean temperature for this region with an explained variance of 46.8%. Five cold (1861-1869, 1889-1899, 1913-1920, 1936-1942 and 1952-1990) and three warm (1870-1888, 1922-1934 and 2000-2005) periods were identified in the reconstruction. The reconstruction not only agreed well with the instrumental records in and around the study area, but also showed good resemblance to previous temperature reconstructions from nearby regions, indicating its spatial and temporal representativeness of the temperature variation in the central part of eastern China. Although no secular warming trend was found, the warming trend since 1970 was unambiguous in the Dabie Mountains (0.064 A degrees C/year). Further temperature comparison indicated that the start time of the recent warming in eastern China was regional different. It delayed gradually from north to south, starting at least around 1940 AD in the north part, around 1970 AD in the central part and around 1980s in the south part. This work enriches the high-resolution temperature reconstructions in eastern China. We expect that climate warming in the future would promote the radial growth of alpine Pinus taiwanensis in the subtropical areas of China, therefore promote the carbon capture and carbon storage in the Pinus taiwanensis forest. It also helps to clarify the regional characteristic of recent warming in eastern China.</p

    Theory and approach of identification of ground interfaces based on rock drillability index

    Get PDF
    Rock drillability index is a very key parameter in selection of drill bit type and determination of productivity in petroleum, mining and geology. Unfortunately, there are many limits in the current definition as well as experimental methods. Drillability is redefined and a new concept of drillability index is brought out from analysis. Under the new concept, the drillability index is defined as penetration rate under specific energy. Based on the coupling relationship among effective thrust, rotation speed, penetration rate and drillability index, a calculation formula is established. Besides, the sensitivity of the drillability index in identification of ground layer is analyzed and its physical signification is expatiated also. The result shows that the new index overcomes the blind area in the traditional concept and can be used in continuous identification of ground layer along borehole profile.link_to_subscribed_fulltex

    Automated detection of congenital heart disease in fetal ultrasound screening

    Get PDF
    Prenatal screening with ultrasound can lower neonatal mortality significantly for selected cardiac abnormalities. However, the need for human expertise, coupled with the high volume of screening cases, limits the practically achievable detection rates. In this paper we discuss the potential for deep learning techniques to aid in the detection of congenital heart disease (CHD) in fetal ultrasound. We propose a pipeline for automated data curation and classification. During both training and inference, we exploit an auxiliary view classification task to bias features toward relevant cardiac structures. This bias helps to improve in F1-scores from 0.72 and 0.77 to 0.87 and 0.85 for healthy and CHD classes respectively

    Combining Multi-Sequence and Synthetic Images for Improved Segmentation of Late Gadolinium Enhancement Cardiac MRI

    Get PDF
    © Springer Nature Switzerland AG 2020. Accurate segmentation of the cardiac boundaries in late gadolinium enhancement magnetic resonance images (LGE-MRI) is a fundamental step for accurate quantification of scar tissue. However, while there are many solutions for automatic cardiac segmentation of cine images, the presence of scar tissue can make the correct delineation of the myocardium in LGE-MRI challenging even for human experts. As part of the Multi-Sequence Cardiac MR Segmentation Challenge, we propose a solution for LGE-MRI segmentation based on two components. First, a generative adversarial network is trained for the task of modality-to-modality translation between cine and LGE-MRI sequences to obtain extra synthetic images for both modalities. Second, a deep learning model is trained for segmentation with different combinations of original, augmented and synthetic sequences. Our results based on three magnetic resonance sequences (LGE, bSSFP and T2) from 45 different patients show that the multi-sequence model training integrating synthetic images and data augmentation improves in the segmentation over conventional training with real datasets. In conclusion, the accuracy of the segmentation of LGE-MRI images can be improved by using complementary information provided by non-contrast MRI sequences

    Multi-Scalar-Singlet Extension of the Standard Model - the Case for Dark Matter and an Invisible Higgs Boson

    Full text link
    We consider a simple extension of the Standard Model by the addition of N real scalar gauge singlets \vp that are candidates for Dark Matter. By collecting theoretical and experimental constraints we determine the space of allowed parameters of the model. The possibility of ameliorating the little hierarchy problem within the multi-singlet model is discussed. The Spergel-Steinhardt solution of the Dark Matter density cusp problem is revisited. It is shown that fitting the recent CRESST-II data for Dark Matter nucleus scattering implies that the standard Higgs boson decays predominantly into pairs of Dark Matter scalars. It that case discovery of the Higgs boson at LHC and Tevatron is impossible. The most likely mass of the dark scalars is in the range 15 GeV \lsim \mvp \lsim 50 GeV with BR(h \to \vp\vp) up to 96%.Comment: 18 pages, 15 figure

    Stringy Stability of Charged Dilaton Black Holes with Flat Event Horizon

    Get PDF
    Electrically charged black holes with flat event horizon in anti-de Sitter space have received much attention due to various applications in Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence, from modeling the behavior of quark-gluon plasma to superconductor. Crucial to the physics on the dual field theory is the fact that when embedded in string theory, black holes in the bulk may become vulnerable to instability caused by brane pair-production. Since dilaton arises naturally in the context of string theory, we study the effect of coupling dilaton to Maxwell field on the stability of flat charged AdS black holes. In particular, we study the stability of Gao-Zhang black holes, which are locally asymptotically anti-de Sitter. We find that for dilaton coupling parameter α\alpha > 1, flat black holes are stable against brane pair production, however for 0 < α\alpha < 1, the black holes eventually become unstable as the amount of electrical charges is increased. Such instability however, behaves somewhat differently from that of flat Reissner-Nordstr\"om black holes. In addition, we prove that the Seiberg-Witten action of charged dilaton AdS black hole of Gao-Zhang type with flat event horizon (at least in 5-dimension) is always logarithmically divergent at infinity for finite values of α\alpha, and is finite and positive in the case α\alpha tends to infinity . We also comment on the robustness of our result for other charged dilaton black holes that are not of Gao-Zhang type.Comment: Fixed some confusions regarding whether part of the discussions concern electrically charged hole or magnetically charged one. No changes to the result
    corecore